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CHARACTERISTICS OF HIGH-FREQUENCY SIGNALS, NOISE,
AVAILABILITY, AND DURATION OF BANDWIDTHS BASED ON ROTHR

AMCHITKA SPECTRUM MEASUREMENTS

1. INTRODUCTION

The development and operational deployment of HF radars has provided an opportunity to examine
the HF band with greater measurement accuracy than is available with conventional test equipment and
in greater detail than would otherwise be likely [1]. Such radars continually select frequencies and adapt
waveforms to fit the existing HF environment, and part of this procedure evolves regular and frequent
scans or a iarge span of the HF hand. The exceptional featiire-s of radar operations that are hing
exploited in this analysis are principally derived from the radar's spectrum monitor (SM) subsystem. The
spectrum monitor is capable of linearly recording both the strongest HF band signals and the
environmental noise in an unused channel - a feature not possible with commercial test equipment. The
basic data being analyzed are records of power level at the terminals of a wide azimuthal beamwidth
antenna made in narrowband steps between 5 and 28 MHz. The data records were acquired by the Navy's
AN/TPS-71 Relocatable Over-The-Horizon Radar (ROTHR) system. The ROTHR is an operational
landbased HF (5 to 28 MHz) radar system geographically located on Amchitka Island, Alaska. The
primary mission of the ROTHR is to support maritime antiair and antisurface warfare for Naval tactical
forces in selected operating areas. In addition, the ROTHR is required to perform this mission on a
not-to-interfere basis.

The objective of this analysis is to take advantage of the ROTHR data collected from operations on
Amchitka Island to investigate

(a) maximum signal levels with which the ROTHR must coexist,
(b) how the CCIR (International Radio Consultative Committee) noise model compares with SM

measured data (i.e., if noise measurements from the SM and radar are indicated directionally,
and if the radar is self-noise-limited),

(c) maximum and minimum power levels to identify dynamic range requirements,
(d) channel availability based on SM measurements, and determination of the fraction of available

channels as a function of bandwidth,
(e) lifetimes of available channels.

Section 2 presents a description of the equipment and data characteristics. Section 3 provides results
and analysis based on empirical noise power distributions of the HF environment at the ROTHR site.
Sections 4 and 5 compare the noise estimates based on SM data with CCIR noise predictions, the radar's
specified minimum noise level, and the narrow azimuthal beam width radar. Plots indicate times and
frequency bands where the ROTHR is expected to be limited by internal noise. Results from Sections 4
and 5 agree with Nichols and Gooding 121, and the CCIR model [31. Section 6 discusses the decision rule
for channel availability and processing method. Section 7 describes how available channel widths are
determined, and plots the availability of selected channel widths for each MHz frequency interval from
5 to 28 MHz during day and nighttime operations. Results of bandwidth duration are given for January

Manuscript approved February 1, 1993.



2 George D. M' Neal

and July in Section 8, representing the seasons that will most likely show a noticeable difference in
duration characteristics. Section 9 presents conclusions of the investigation.

SM data acquired during the hours of 00-GMT (00Z) and 12-GMT (12Z) were used for the
investigation of channel availability. These times, OOZ (local daytime) and 12Z (local nighttime),
represent day and nighttime respectively at the radar site, and also can be considered respectively as a
best- and worst-case scenario to determine the number of available channels that could be used by the
radar. Results of the analysis indicate frequency regions in the HF spectrum where available channels may
be found during day and nighttime ROTHR operations at the Amchitka location.

2. EQUIPMENT AND DATA DESCRIPTION

The noise data analyzed in this study was obtained by the ROTHR spectrum monitor, a passive
subsystem of the ROTHR radar. The receive antenna of the SM is a Twin-Whip Endfire Receiving Pair
(TWERP) monopole pair. This type of antenna was Aeveloped by SRI [4]. The TWERP meno'poles are
17 ft high, and have a diameter of 6 in. at the base which tapers to a 3 in. diameter at the top. The
front-to-baci, separation of the antenna poles is 13.8 ft, the monopoles are matched to a 200 ohm
transformer by a 3 dB 180 degree hybrid with an equivalent 3.29 meter delay line in the front leg. In
addition, there is 100 ft of ground screen in front of the pole and 20 ft of ground screen behind the back
pole to enhance the front to back ratio. The SM receiver has a 14.5 dB noise figure, an equivalent noise
bandwidth of 4.5 KHz, and a linear dynamic range of 110 dB. The pwer levels measured at the
terminals of the receive antenna are digitized at a 2.5 MHz tate using a 16-bit A/D converter before being
passed to the environment signal processor (ESP). Figure 1 shows a simplified diagram of the SM
receiver setup. Figure 2 provides a description of the TWERP configuration and a simplified
representation of the end-fire beam pattern. Figure 3 provides a plot of the receive antenna's front-to-back
ratio, Fig. 4 indicates the E Field (azimuthal) pattern of the antenna, and Table 1 indicates the directivity
of the endfire receive antenna for various elevation angles vs frequency.

2.1 Spectrum Monitor Data Description

The HF spectrum data are updated by the ROTHR system approximately every 25 s. The data
samples in each update represent the power level in each 3 KHz channel of the HF spectrum from 5 MHz
to 28 MHz, the operating frequency range of the ROTHR. To analyze an update for noise estimates, each
update is partitioned into 23 segments (333 points per segment) where each segment represents a 1 MHz
analysis interval in the 5 to 28 MHz band. Within each analysis interval, the channel with the lowest
power level is used as the noise estimate for that given update. Figure 5(a) is an example of the 7667
power levels of the 3 KHz channels acquired during a single spectrum update. Figures 5(b) and (c)
compare the statistics (upper, median, and lower deciles) of the noise estimates based on a 100 KHz and
1 MHz analysis interval, respectively. Smaller variations between the amplitudes of the estimates are
obtained when a 1 MHz analysis interval is used, and the estimates based on this interval reflect the
characteristics of the noise floor indicated by the top display of Fig. 5. Therefore, a ! MHz analysis
interval is used to obtain estimates of the noise floor for all SM data analyzed in this study.

17 it .TWERP

tSI'SM Receivr AID (F )Otput 7
5-28 MII/ 16 Bit \Vched • I ('hahnnel. in I KIt-

24.5 KHz 25_ Mttz Rate lime .\\crapec Step, ('oVeti nE
Noise BWIBcia fM ccc

Fig. I -- Block diagram of SM receiver setup
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Table 1 - Spectrum Monitor Antenna Directivity (dB) for Elevation vs Frequency

Elevation FREQUENCY IN MHz
Angle

Degrees 5 8 12 16 20 24 28

2 -2.5 -0.5 0.5 0.5 1.3 1.3 0.1
4 1.5 3.5 4.5 5.5 7.3 7.3 7.1
6 2.5 5.5 6.5 7.5 9.3 9.3 11.1
8 3.5 5.5 7.5 8.5 10.3 11.3 12.1

10 3.5 5.5 7.5 8.5 10.3 !11.3 12.1
14 3.5 5.5 7.5 7.5 10.3 10.3 12.1
18 3.5 5.5 7.5 7.5 10.3 10.3 11.1
22 2.5 4.5 6.5 7.5 9.3 9.3 11.1
26 2.5 4.5 6.5 6.5 9.3 9.3 10.1
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Historically, analysis of HF data indicates stability in the noise levels with respect to a given time
of day and season [3 and 5]. To determine if SM measurements are stable for a given time period, upper
deciles, medians, and lower deciles based on minimum power levels in analysis intervals were generated
for time periods of 3 minutes and 1 hour. Figure 6 compares the noise statistics of these time periods.
Observe that the most noticeable difference in the statistics of the two data sets is in the spread of the
upper and lower deciles about the median curve. Also note that the curves representing the median of the
minimum power levels (MEOMI), shown by the solid lines, are in good agreement, i.e., small variability
in amplitude vs frequency. These characteristics were typical of the data analyzed, and indicate that the
MEOMI provides an estimate of the noise that has characteristic behavior as indicated by historical data.

To verify the results associated with the MEOMI for a larger segment of the time interval, SM data
was analyzed over a 30 minute period and compared with the MEOMIs based on the 1 hour time period.
In addition to computing the MEOMIs, statistics associated with the maximum signal in an analysis
interval were also incorporated. Results of the analysis are presented in Fig. 7, where the upper decile,
median, and lower decile associated with the MEOMI, and the median of the maximum power levels
(MEOMA) are plotted. These plots indicate that the MEOMIs based on the 30-minute data set are in good
agreement with those based on the I hour data set. Also observe that the MEOMAs from the two time
periods are in good agreement, and these results are consistent with those obtained from the data
presented in Fig. 6. Furthermore, Fig. 7 indicates the dynamic range of the signal levels in the Amchitka
HF environment in which the ROTHR must operate during the indicated time and season of year.
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3. DISTRIBUTIONS OF SPECTRUM N1Ir,,TOR DATA

Power levels indicated in the spectrum updates will be used to estimate channel availability and
duration based on the statistics of the noise in each analysis interval. Knowledge of how these amplitudes
are distributed with respect to time of day will assist ;'.,,etermin-ing availability and duration of channels
at the ROTHR Amchitka site. To understand tb,: r-aracteristics of the channel poer levels, empirical
distribution functions (EDFs) were generate' I od, on 1 MHz analysis intervals in the frequency range
from 5 MHz to 28 MHz during the time p-riods of OOZ and 12Z. To analyze the behavior ot the power
levels, a comparison of empirical cur.alative distributions of channel amplitudes tfr I and 16 spectrum
updates (25 s and 7 min, respectively) were generated from measurements of the IIf spectrum during the
months of January, April, .' lv, and September at the Amchitka site. Figure 8 shows the EDFs that are
representative of the behav,,,r of the channel amplitudes when I and 16 update data sets were compared.
Furthermore, the characteristics indicated by the EDFs support the findings noted in Section 2.1. i.e
that the power levels show amplitude stability over time. Therefore, based on the behavior of the data
observed in the EDFs, it is reasonable to expect agreement between the MEOMIs, since their distributions
are nearly coincident tfr two distinct intervals of time within a given time period.

JAN!12/ 5 MilI h MIll/ aRtd A\I'R tI/ '7 % i 2I \I IL f,; .i!"WVifitr Nigh( ;n ? h'

_ 4

S r I s',-, . 9
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fa) h

.llrl Il ' 55 1,M t- 6,\IIj , i)•~ P4 1 .' " M ii, 2' "-MI).' , k
".1-: Ir Nil ht 6 1lI .

•,•+ if ,...

4 4

-, -'16 update, .n . .
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The curves shown in Fig. 8 indicate no significant difference between the sample distribution for a
single update (333 sample points) when compared to the distribution using 15 updates (6000 sample
points). Thus, the distributions of power levels will be useful in setting thresholds for determining
channel availability. Specifically, the EDFs indicate that the range of power levels is similar in
magnitude as a function of frequency and time of day, and in particular the characteristics of noise-only
channels, i.e., the channels with the lowest amplitudes are observed to have the same order of magnitude
range regardless of season.

The curves shown in Fig. 9 are representative of the distributions of power levels observed during
the time period of 12Z in the 27 MHz to 28 MHz frequency band for any given day of the months
indicated. For the ROTHR site in Amchitka, this is the time and frequency interval when a minimum
of HF transmissions are expected to occur. Therefore, the EDF of the measured power levels during this
time period and frequency interval should provide an indication of the power levels that are associated
with atmospheric and galactic noise at the radar site.

JAN/ 12Z 27 MNli - 28 Mlit Band APR I 12Z 27 Mltz 29 MID Band
Winter Night Spnng NighN

7 8

Mi• . ........... T - 1
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Fig. 9 - Examples of nighttime EDFs
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An analysis of the EDFs represented in Fig. 9 indicates that channel power levels in this frequency
band ,&nd time period were generally in the interval (- 163, - 150) dBW, with July being the exception.
Furthermore, the EDFs of the power levels are generally characterized by nearly vertical lines (steep
positive slopes), which implies that small deviations in the amplitudes of the power levels occur during
this time period and frequency interval. Generally, the density of the ionosphere at the radar site during
this time period will not support skywave propagation in this frequency band. However, the wide
sweep backscatter ionograms (WSBis) of Fig. 10 indicate there was sporadic E transmission out to 28
MHW during July nighttime which may account for the high power levels in the summer night EDF.
Therefore, for the Amchitka radar site, the measured power levels for nighttime in the 27 MHz to 28
MHz band will most likely represent local atmospheric and galactic noise, and will be unlikely to contain
signal transmissions from any HF spectrum users. Therefore, the power amplitudes of channels
representing local atmospheric and galactic noise will be defined by the power amplitudes indicated in
the EDFs shown in Fig. 9. Thus, any channel with power levels in the (- 170, -150) dBW interval will
be considered to represent environmental noise, and therefore may be tested for available use by the
ROTHR (see Section 6).

To verify the rtsults based on the analysis of the EDFs presented in Fig. 9, distributions of channel
power levels were generated for times and frequency intervals where noise and HF users were expected
to exist during radar operations at the ROTHR site. Figure 11 shows representative samples of these
EDFs. A probability plot is used, as is the case of the other EDFs, to examine the peculiarities of the
channel power levels noted above. Reference 6 provides a discussion and further references on statistical
analysis based on empirical distribution functions. In particular we are interested in distinguishing power
levels assoc ited with noise and HF users, as opposed to general characteristics of channel amplitudes
investigated in Figs. 8 and 9.

ThIe distributions shown in Fig. 11 are the EDFs of the noise and HF users for the indicated periods,
and are represented by curves with two distinct slopes. Therefore, consider truncating the curves above
the 99% horizontal line, and drawing a vertical line from the intersection of the two slopes to the
horizontal axis. For each of the seasons, the day and night cutves are represented by two slopes (with
the exception of January night, where only one slope is present), over the range of power levels indicated
on the abscissa. In almost every instance, the power levels below the intersection of the two slopes are
less than -150 dBW and have characteristics that were indicated by the distribution of noise-only
channels. Thus, the aforementioned particularities are pres-nt in each of the plots, and power levels
associated with this portion of distributions are defined over the - 170 dBW to - 150 dBW amplitude
range. That is, the distribution of the power levels in this amplitude interval is shown to have small
deviations, and is represented by a line segment with a steep positive slope. Specifically, these results
indicate that channels with noise and HF traffic can be identified based on the channel power level
measured by the ROTHR SM.

Employing the definition of noise, the following characteristics can be observed from the empirical
distributions:

(1) no apparent difference between one spectrum update (25 s) and that of 16 consecutive spectrum
updates (7 min);

(2) channels with only noise will generally have amplitudes between - 170 and - 150 dBW;
(3) EDFs of analysis intervals with noise only are generally represented by a line segment with a

steep positive slope over the amplitude range indicated above; and
(4) EDFs of an;'vsis intervals with noise and HF users present are generally represented by curves

having two distinct slopes.

In addition to analyzing empirical cumulative distributions, probability mass functions (pmfs) were
also investigated to determine if other characteristics of the channel power levels could be identified.
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Representative examples of the probability mass functions derived from the spectrum measurements
Suring the indicated time and frequency interval are shown in Fig. 12. These graphs emphasize the
t aaracteristics noted in the pmfs for the time and frequency interval indicated. An examination of these
frequency distributions will show characteristics in the data which indicate seasonal changes that are not
as evident from the EDFs. Two of the most noticeable differences that were observed in the pmfs are
ind::ated in the graphs in Fig. 12.

Results based on the analysis of empirical and frequency distributions have identified characteristics
in the spectrum updates which appear to be a function of time, frequency, and season. These features can
be used to identify power levels for establishing noise thresholds and other decision rules for defining
channel availability and duration. Analysis of the data presented in this section indicates that two distinct
curves are usually present in the empirical cumulative distributions, where the background noise is
indicated by a vertical line having a steep positive slope, and the HF traffic (users) are represented by
the line segment defined for amplitudes greater than - 150 dBW. The pmfs provide additional information
on HF traffic for a given time of day and season of the year, which can be observed in the upper tails
of the frequency distributions. The high power levels indicated in the tails of the pmf are associated with
the HF traffic.
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Fig. 12 - Examples of probability mass functions

4. SM NOISE MEASUREMENTS VS SPECIFICATION REFERENCE LEVEL

To determine if the ROTHR was externally noise limited, estimates of the noise floor, the MEOMIs,
were obtained over 5 days during July and September, respectively, and compared to the radar's
specification reference level (SRL). The SRL represents the smallest signal in a 1 Hz bandwidth that can
be measured by the ROTHR SM receiver. This level is defined by

SRL (dB) = kTB (d0) + noise figure of receiver (dB) = -204 dB + 14.5 dB = -189.5 dB.

The difference between the estimates of the noise floor and the SRL were used to determine when
the ROTHR was externally noise limited during the months of July and September. Before this difference
could be obtained, the noise estimates were converted to an equivalent noise level (ENL) in a 1 Hz
bandwidth. Since 4.5 KHz (the SM noise bandwidth) is equivalent to 1O(Loglo(4500)) = 36.5 (dB), the
ENL in a 1 Hz bandwidth is obtained by adding -36.5 dB to the MEOMI. A comparison between the
noise estimates and the SRL can be made by subtracting the ENL from the SRL which results in a noise
delta for each analysis interval. !f the noise delta is equal to or greater than zero, the indication is that
the radar was externally noise limited during that time period and frequency interval.
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A comparison between the analyzed SM data and SRL are shown in Figs. 13 and 14 for a typical
day during the months of July and September, respectively. The analysis indicates that for July, the
measured noise exceeded internal noise from 8 to 16 GMT and for frequencies between 5 MHz and 17
MHz. Results shown in Fig. 14 (September data), indicate that the noise deltas are greater than zero from
8 to 16 GMT and for frequencies from 5 MHz to 15 MHz. Specifically, ROTHR Amchitka appears to
be externally noise limited between these hours and frequencies for the months indicated.

27 dB
2-20
23-
21 -1

15

190

013-

7
5-0

0 2. 4 6 810 12 14 16 18 20 22 24

TIME (GMT) 1-

Fig. 13 -- July radar noise vs specification level (-189.5 dBW)

27-d
25
23 15

.21
2-19

>- 10
LU 15-

013-
ii

5-- 5

0 2 4 6 8 10 12 14 16 18 20 22 24
TIME (GMT)

.5

Fig. 14 - September radar noise vs specification level (-189.5 dBW)

Seasonal comparisons of the noise deltas are shown in Figs. 15 and 16. Based on the data presented
in these figures, the ROTHR appears to have been externally noise limited for both day and night cases,
even though the differences between the noise estimate and the reference level are in some cases less than
zero. However, observing that the difference is changing as a function of frequency, a characteristic of
external noise and not internal noise, indicates that the ROTHR was externally noise limited during these
time periods.
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5. SM MEASUREMENTS VS CCIR NOISE PREDICTIONS

In this section, noise estimates derived from Amchitka SM data are compared with the CCIR 322
[3] noise predictions for day and nighttime ROTHR operations, and the results are shown in Fig. 17. In
order to compare these data sets, adjustments were made to both. First, the noise estimates were
converted to ENLs in a 1 Hz bandwidth, and second, the losses of the SM's receive antenna were added
to the CCIR predictions.

The data presented in Fig. 17 represent July daytime and nighttime, (OOZ to 04Z) and (12Z to 16Z),
respectively. The CCIR curve represents the combined atmospheric and galactic noise predictions, and
the ROTHR curve represents the MEOMI derived from the data sets sampled during the indicated time
periods. It appears that the ROTHR noise estimates are influenced primarily by the predicted galactic and
atmospheric noise curves during the nighttime hours, and are relatively flat with respect to frequency
during the daytime hours. The agreement between the two data sets appears to be besL during the
nighttime hours.

5.1 SM Noise vs Radar Log-Amp Noise

ROTHR log-amplitude (log-amp) data is another source of noise estimates. Noise measurements from
the log-amp data represent power levels based on active returns of the radar, whereas power levels based
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Fig. 17 - ROTHR SM estimates vs CCIR noise predictions
for (a) July OOZ and (b) July 12Z

on SM measurements are obtained from the passive subsystem of the radar. However, if Doppler regions
are selected where no radar echoes exist, the log-amp radar data provides a measure of the noise. The
power levels from the log-amp data are obtained from the range-Doppler-azimuth cells, whicb provide
an indication of the noise level in a 1 Hz bandwidth of the radar's receive beam at plus or minus half the
waveform repetition frequency (± WRF/2). If the noise levels from the two sources are different, this
difference is an indication of how directional the noise is at the radar site. It is assumed that there is no
self or active noise in the log-amp data, and therefore any characteristics of the noise between the two
data sets which are significantly different would be manifested in the distributions of the power levels.

Empirical distributions were generated to investigate the differences between the noise levels from
the log-amp and SM measurements. Figure 18 compares these noise distributions. January was the only
month for which this analysis was performed, and the information presented in these plots is
representative of the data analyzed. In comparing the distributions, the following parameters of the
log-amp data were fixed: time, frequency, azimuth, and range. That is, to generate a time history of radar
returns at ± WRF/2, all returns within a 100 nmi range interval were combined, provided the returns
were at the same operating frequency of the radar, azimuth angle off boresight, and in a fixed 10 minute
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Fig. 18 - Log-amp noise levels vs SM noise levels

interval. These restrictions were in place because the log-amp radar returns are associated with different
regions within the radar's coverage area, which may have different revisit rates depending upon the
region's surveillance priority. To generate the sample distribution of log-amp data, the following
requirements were considered for the January 5, 1990 radar returns:

"* measurements between 00: 1OZ and 00: 20Z,
"* an operating frequency of 17.5 MHz,
"* coverage area between 600 and 699 nmi,
"* azimuth of + 10 degrees from boresight.

Radar returns with these features would be processed from the log-amp data and used to generate the
empirical distribution of the power levels with these parameters. This distribution is now compared to
the EDF obtained from the SM measurements for the same month, day, 10. min. period, and MHz
analysis interval. In general, the SM EDFs will contain a greater number of samples than the EDF of the
log-amp data. However, combining the log-amp data as indicated provides ample data points with which
to compare the EDFs.

For the plots shown in Fig. 18, the following format holds; the captions indicate the month, hour,
and frequency interval in which the ROTHR was operating, the degrees off boresight, location of the
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noise measurements (± WRF/2), and the range cells within the coverage area. The four curves represent
the distributions of the measured active and measured passive power levels. The distributions representing
the passive are labeled SMNoisexMHz and SMNoiseOnly. and are, respectively, the power levels
measured by the SM and observed power levels in an analysis interval with only noise present. The
distributions labeled RyyAZk_ ± WRF/2 are the noise levels obtained from the log-amp data.

In each of the plots shown in Fig. 18, the following observations are evident; (1) noise levels at ±
WRF/2 are in excellent agreement with each other, (2) all distributions appear to be in agreement below
the 30th percentile range, (3) the distribution of the log-amp data follows the distribution of power levels
based on the SM data, and (4) these observations are true for each of the cases considered. The data
imply no significant directionality in the noise environment at the Amchitka :adar site.

6. DETERMINING CHANNEL AVAILABILITY

The analysis of channel availability and duration is based on using the first order statistic of the
power levels in each MHz analysis interval. This statistic is used to define a threshold for channel
availability with respect to each MHz interval in the HF spectrum. The threshold level for any analysis
interval is defined to be 5 dB above the minimum signal level for that given band of frequencies.
Specifically, we are allowing a channel's power level to be at most three times the power level of the
smallest signal before declaring a channel occupied. Therefore, a criterion based on the minimum signal
level plus 5 dB is used to identify available channels. This criterion was applied to spectrum
measurements for the day and nighttime cases for the months of January, April, July, and September,
which represented the measurements of the current ROTHR (Amchitka) HF spectrum database.

An update from the SM pi,1.,ide 7667 chdnneis representing the frequencies between 5 and 28 MHz
in 3 KHz steps. Of these channels, approximately half are restricted and not available for use by the
radar. Since the operation of the ROTHR must not interfere with other users in the HF spectrum, a
procedure that identifies channels in use would also indicate which channels in the spectrum are available.
The procedure implemented to determine channel availability is based on the above thresl -ld test. Figure
19 shows the possible locations of available channels in the HF spectrum based on ý threshold test
procedure.

D channels available for channels occupied by restrictcd band in which
ROTHR operations selected other users ROTHR operation is
by spectrum monitor tbrbidden

Lower End off -F Band I Uppcr End of FiF Band

Fig. 19 - Selection of available frequencies for ROTHR
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6.1 Decision Rule For Channel Availability

Testing for channel availability will be performed by comparing a defined threshold level against the
power level associated with each channel , i•in an analysis interval. If the power level is equal to or less
than the threshold, the channel is identified as available; otherwise, the channel is identified as occupied
and can not be used by the radar. An available bandwidth is defined in terms of available channels. That
is, since each channel is 3 KHz in width, an available bandwidth equal to J-KHz would be represented
by the nearest integer which is greater than or equal to J/3 contiguous available channels. For example,
an available 50 KHz bandwidth is represented by 17 contiguous 3 KHz channels that have passed the
threshold test. For the data being analyzed, the decision rule used to determine whether or not a channel
is available is defined by

Threshold = Minimum Power Level (per MHz interval) + 5 dB.

If the minimum power level is increased by 5 dB, the resulting value defines an upper bound for available
channels within that analysis interval. This implies that a channel's power level must be at least three
times the power level of the smallest signal before the decision to declare the channel occupied. It should
be noted that the above threshold rule is equivalent to the 50 percentile level based on the empirical
distributions discussed in Section 3. Specifically, if you increase the minimum level by 5 dB, in almost
all cases the resulting value is approximately equal to the median power level of the empirical distribution
for all nighttime cases representing the 27 MHz to 28 MHz frequency range. Furthermore, EDFs based
on time and frequency can, be used to investigate other decision rules for identifying channel availability.

7. CHANNEL WIDTH ANALYSIS

Analysis cf the data for channel width content was performed for the months of January, April, July,
and September and for the times of OOZ and 12Z. Table 2 illustrates the counting method used for
channel widths and associated duration (runs) during the analysis. The eight columns in this example
represent the frequencies in the analysis interval. For actual ROTHR data, however, the analysis interval
is equal to 1 MHz (333 columns). Time is represented by the number of rows in the table, which
corresponds to the number of updates being analyzed. For this example, assume each channel width is
3 KHz, which means that the largest channel width in any update can only be 24 KHz. First, compute
the various bandwidths (i.e., look for l's across the rows): there are 32 channels that are 3 KHz wide,
(i.e., count all l's), 12 channels that are 6 KHz wide (i.e., rows with all nonoverlapping I 1} pairs),
6 channels that are 9 KHz wide (rows with all nonoverlapping { 1 1 1) pairs), and there are 2 channels
each of 12 KHz, 15 KHz, or 18 KHz width ( i.e., in rows 3 and 4, count I1l11}, (11111), and
{1111111), respectively.

Table 2 - Processed Data Array

1 0 0 0 0 1 0 0
1 1 0 0 1 1 0 0
1 1 1 1 1 1 0 0
1 1 1 1 1 1 0 0
1 1 0 1 1 1 0 0
0 1 0 1 1 1 0 0
0 1 0 0 1 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
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The duration (run) of a channel width is defined by the number of consecutive I's appearing in the
appropriate column(s). Channel width runs that would result from the processed data array in Table 2
are as follows. A channel of width 3 KHz would have runs of 5, 6, 2, 4, and 9, as indicated by the total
count of consecutive l's in columns I to 8. Note, columns that contain a repeat count, as illustrated by
the count of l's in columns 2 and 5, are only counted once. The duration of 6 KHz channels as indicated
by the count of pairwise columns would have runs of 4, 2, and 6 resulting from the count of l's in
columns (1,2), (3,4), and (5,6), respectively. The duration of a 9 KHz channel would have runs of 2 and
4 as indicated by the count of triplets in columns (1,2,3) and (4,5,6), respectively. Likewise the duration
of the 12 KHz, 15 KHz, and 18 KHz would all have a run of 2. Table 3 contains three examples of the
various counts that were just described for available bandwidth and duration. Note, BW in Table 3 means
bandwidth (i.e., channel width).

Table 3 - Examples of Duration Counts from
Processed Data Array

9 KHz BW

1 0 0 0 0 1 0 0
1 1 0 0 1 1 0 0

1 1 0 0
1 1 1 1 1 0 0
1 1 0 1 1 1 0 0

0 1 0 1 1 1 0 0
o 1 0 0 1 1 0 0
o 0 0 0 `70 0
o 0 0 0 0 1 0 0
o 0 0 / 0 0 0 0 0

3 KHz BW of R UN 4 6 KHz BW of RUN 6

7.1 Channel Availability Based On Decision Rule

The availability analysis was performed for day and nighttime periods for two consecutive days in
each of the seasons. However, only one day for each season is shown to illustrate the observed
characteristics. Results of the analysis are presented in the form of box plots [71 for selected channel
widths. These plots show the availability characteristics with respect to the time of day and season of
year. Because of the large number of channel widths that may be used by the radar, three representative
channel widths were chosen to illustrate the availability chipracteristics. Widths of 3 KHz, 9 KHz, and
21 KHz were selected and the availability of these channel widths for day and nighttime usage in each
season is presented in Figs. 20 through 27. In each display, general characteristics of the available
bandwidths are indicated in each analysis interval. The horizontal axis is divided into segments of 5 MHz
to 16 MHz, and 17 MHz to 27 MHz, and the vertical axis indicates the availability count, i.e., the
number of times a channel of an indicated width was declared clear in the analysis interval.

With respect to channel width, time of day, and month, a rectangle is shown for each analysis
interval indicating the following: the upper edge represents the third quartile for that channel width, the
lower edge represents the first quartile for that channel width, the horizontal line inside the rectangle
indicates the median availability count, the end point of the line from the upper edge indicates the largest
count, the end point of the line from the bottom edge indicates the smallest count, and the circles above
and/or below the largest or smallest availability count indicate possible outliers [51.
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The c'laracteristics most noted from the box plots are

(1) the bandwidth distributions for successive updates are considered to be in good agreement, which
implies that the availability of bandwidths is stable;

(2) rectangles associated with channel widths greater than 3 KHz are narrow, which implies that
there are small deviations in the observed counts from update to update;

(3) for all months considered, very few bandwidths exist above 21 KHz during the time ionospheric
conditions would support ROTHR signal propagation; and

(4) Januat! availability counts are lower and relatively uniform between 5 MHz and 16 MHz, in
contrast with the other seasons which have higher availability counts and similar shapes, e.g.,
local peaks at 6 MHz and 9 MHz.

The characteristic identified in (4) can best be observed when the 3 KHz channel plots from each
season are compared. These comparison shows that between 5 and 16 MHz, the availability count in
almost all cases increases and decreases in the same frequency band for the months of April, July, and
September. However, the January channel width counts for the same frequency intervals are relatively
uniform in shape.

7.2 Channel Availability For Random Time Periods

The analysis and results thus far have been based on processing 20 minutes of continuous segments
of SM data. However, in many instances, estimates of available bandwidth are desired over 4 hour
periods. Because of computer memory limitation, processing 4 hours of continuous SM updates cannot
be performed in a reasonable amount of time. Therefore, an alternative technique must be used to
accomplish this task. The findings detailed in Sections 2 and 3 were used to generate arbitrary data sets
of 20 minutes in length of each hour in the 4 hour period and to compute the average availability count
of channel widths. This analysis was performed for the times of 00Z to 04Z and 12Z to 16Z for each of
the months in this study.

Figures 28 through 31 represent the results of availability for random time periods in a condensed
version of the information provided in Figs. 20 through 27. Shown in Figs. 28 through 31 are the
computed averages of availability counts based on the random samples from the 4 hour data sets.
Each display shows the average number of available 3 KHz, 9 KHz, 15 KHz, 21 KHz, and 30 KHz
channel widths that were computed in the 5 MHz to 28 MHz frequency spectrum. The availability
counts associated with these figures lie on or inside the rectangles shown in the box plots for the
respective channel widths in Figs. 28 through 31. That is, the characteristics that were identified from
the box plots are also present when the analysis was performed for arbitrary data sets over a 4 hour
period.

Interpreting the results can be assisted by considering the information in the Fig. 10 wide sweep
backscatter ionograms. Specifically, the January WSBI for OOZ (daytime) indicates that while all
frequencies between 5 MHz and 28 MHz could be used, the losses are higher below 10 MHz, which
may account for the lower counts when channel availability for January is compared with the other
months.
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8. ANALYSIS OF BANDWIDTH DURATION

In this section we investigate the duration associated with the available bandwidths discussed in
Section 7. Specifically, we try to determine the number of consecutive updates that a giver channel width
will be available to the radar as a function of time of day, frequency, and season of the year. To obtain
estimates that would provide some ihnsig• t into the ,,,,estion, analysis of bandwidth duration was
performed on the first 20 minutes of data gathered between OOZ and 12Z for the months of January and
July. These months represent the winter and summer seasons, respectively. These are the seasons that
will most likely indicate the most noticeable difference in channel duration. Figures 32 through 35 present
the results of the analyses in the form of box plots. Because of the large number of channel widths that
may be used by the radar, bandwidths of 9 KHz and 30 KHz were chosen to illustrate the duration
characteristics in the data. From these bandwidths, some inferences can be made concerning other
bandwidths. For example, the longest duration (run) of a 9 KHz channel implies a run of at least the same
duration for all channels lower than 9 KHz, likewise for the case of a 30 KHz channel.
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Fig, 32 Chne Duration~lanuary Day
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Characteristics that can be observed from the box plot distributions for the months and times analyzed
are As follows:

Median Duration Range Over 5 MHz to 28 MHz
January (Winter), 00Z (Daytime)

9 KHz 30 KHz

5-10 minutes (10-20 upda'es) 2-5 minutes (5-10 updates)

Figure 32 indicates frequency intervals that are most heavily occupied as observed in the 30 KiHz
duration plot, This observation agrees with the data presented in the bandwidth summary plot shown in
Fig. 28, which also indicates few bandwidths above 30 KHz exist.

Median Duration Range Over 5 MHz to 28 MHz
January (Winter), 12Z (Nighttime)

9 KHz 30 KHz

1-7 minutes (3-15 updates) 1-7 minutes (3-15 updates)

Figure 33 indicates that frequencies above 8 MHz or 9 MHz are most likely not used because of
ionospheric conditions, therefore we observe duration on the order of those observed during daytime
hours.

The duration characteristics observed from the analysis of the July (summer) data are presented in
Figs 34 and 35, and are sur-marized as follows:

Median Duration Range Over 5 MHz to 28 MHz
July (Summer). OOZ (Daytime)

9 KHz 30 KHz

7-15 minutes (7-35 updates) 2-12 minutes (5-25 updates)

Figure 34 also shows that the most likely frequency intervals being used are between II MHz and

17 IHz, We note that this observation agrees with the data presented in the summary bandwidth plot for
Julk. Fig. 30.

Median Duration Range Over 5 MHz to 28 MHz
July (Summer), 12Z (Nighttime)

9 KHz 30 KHz

2-10 minutes (5-20 updates) 2-5 minutes (2-10 updates)

[he rnnt n4,ticeahle ditlerence between the summer and winter duration data for nighttime is that
during the summer there are generally no 30 KHz channels with durations longer than 2 minutes for the
3 NIIH/ t,, 16 MHz trequency interval. This agrees with our earlier conclusion that the bandwidths
avaiiahle tl the radar for nighttime operation will lie below 16 MHz,
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9. DISCUSSION

The development, installation, and operational deployment of the Navy's AN/TPS-71 Over-The-
Horizon Radar system has provided a new source of high quality HF environmental data which in the past
was not available to the HF community. The data analyzed in this study represents a small percentage
of HF spectrum measurements acquired by the ROTHR. However, this study demonstrates that the
analysis of ROTHR's SM data provides results that are in agreement with historical HF environmental
data, and that these radar measurements of the spectrum are consistent and stable with respect to
frequency and time-of-day. In particular, this study has shown that information concerning channel
availability, channel lifetimes, characteristics of HF noise, and HF user traffic can be investigated based
on the SM's measurements.

The analysis of ROTHR Amchitka SM data has indicated that the radar is externally noise limited
during the times when HF propagation is supported by the ionosphere, even though there were cases
when the difference between the specification noise level and measured noise levels was less than zero
dB. In these cases, it was noted that the behavior of the noise deltas changed as a function of frequency
over the radar's operating frequency range. With respect to SM measurements vs CCIR noise predictions,
atmospheric and galactic noise appear to be the major influence on ROTHR noise measurements at
Amchitka for both day and night cases. However, the degree of influence is seasonal and frequency
dependent.

The results of this study provide an understanding of the availability of bandwidths and their duration
based on actual data acquired by the ROTHR radar system. In addition, the analysis techniques and
programs developed during this study can be used to describe and understand many aspects of the
bandwidth occupancy problem related to operating a high-frequency Over-The-Horizon Radar system in
the HF spectrum. Analysis of the SM measurements has identified characteristics of the HF noise
environment, the availability of free channels, and the median duration of various channel widths at the
ROTHR Amchitka radar site. Based on these measurements, the following characteristics were identified
with respect to the indicated areas.

Amchitka's HF Environment:

"* SM measurements are stable over a 60 minute time period.
"* Random samples of 20 minute data sets over a 4 hour period also appear to be stable.
"* The background noise can be identified by the vertical (positive, steep slope) portion of the

empirical distribution of channel power levels.
"• During day and nighttime hours there exist few available bandwidths greater than 21 KHz.
"* Bandwidth estimates are stable and show small deviations over time for all seasons.
* Distributions of noise power levels based on SM measurements are in close agreement with noise

levels seen on the radar.

Bandwidth Duration:

* Free channel durations were shorter for the winter season, for wider bandwidths and for
nighttime.

Receiver Noise vs Internal Noise:

* The ROTHR appears to be externally noise limited during periods when ionospheric conditions
support HF propagation.
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Dynamic Range:

0 The difference between the maximum signal and noise level approached 100 dB.
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